Glucose persistence on high-mannose oligosaccharides selectively inhibits the macroautophagic sequestration of N-linked glycoproteins.
نویسندگان
چکیده
The macroautophagic-lysosomal pathway is a bulk degradative process for cytosolic proteins and organelles including the endoplasmic reticulum (ER). We have previously shown that the human colonic carcinoma HT-29 cell population is characterized by a high rate of autophagic degradation of N-linked glycoproteins substituted with ER-type glycans. In the present work we demonstrate that glucosidase inhibitors [castanospermine (CST) and deoxynojirimycin] have a stabilizing effect on newly synthesized glucosylated N-linked glycoproteins and impaired their lysosomal delivery as shown by subcellular fractionation on Percoll gradients. The inhibition of macroautophagy was restricted to N-linked glycoproteins because macroautophagic parameters such as the rate of sequestration of cytosolic markers and the fractional volume occupied by autophagic vacuoles were not affected in CST-treated cells. The protection of glucosylated glycoproteins from autophagic sequestration was also observed in inhibitor-treated Chinese hamster ovary (CHO) cells and in Lec23 cells (a CHO mutant deficient in glucosidase I activity). The interaction of glucosylated glycoproteins with the ER chaperone binding protein (BiP) was prolonged in inhibitor-treated cells in comparison with untreated CHO cells. These results show that the removal of glucose from N-glycans of glycoproteins is a key event for their delivery to the autophagic pathway and that interaction with BiP could prevent or delay newly synthesized glucosylated N-linked glycoproteins from being sequestered by the autophagic pathway.
منابع مشابه
Inhibition of myoblast fusion by the glucosidase inhibitor N-methyl-1-deoxynojirimycin, but not by the mannosidase inhibitor 1-deoxymannojirimycin.
The effects of N-linked-oligosaccharide-processing inhibitors on the fusion of rat L6 myoblasts to form myotubes were examined. The glucosidase inhibitor N-methyl-1-deoxynojirimycin (MDJN) greatly inhibited fusion, whereas the mannosidase inhibitor 1-deoxymannojirimycin (ManDJN) had relatively little effect, although both compounds prevented the formation of N-linked complex oligosaccharides. T...
متن کاملInhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol.
The alpha-glucosidase inhibitor bromoconduritol (6-bromo-3,4,5-trihydroxycyclohex-1-ene) inhibits trimming of the innermost glucose residue from the Glc3Man9GlcNAc2 precursor of high-mannose and complex oligosaccharides. This inhibition occurs both in intact cells and with a microsomal enzyme preparation. The formation of lipid-linked oligosaccharides was increased in glucosidase-inhibited cell...
متن کاملInterference with glycosylation of glycoproteins. Inhibition of formation of lipid-linked oligosaccharides in vivo.
Influenza-virus-infected cells were labelled with radioactive sugars and extracted to give fractions containing lipid-linked oligosaccharides and glycoproteins. The oligosaccharides linked to lipid were of the 'high-mannose' type and contained glucose. In the glycoprotein fraction, radioactivity was associated with virus proteins and found to occur predominantly in the 'high-mannose' type of gl...
متن کاملComparison between 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin as inhibitors of oligosaccharide processing in intestinal epithelial cells.
The alpha-glucosidase inhibitor N-methyl-1-deoxynojirimycin (MDJN) inhibits the synthesis of N-linked complex oligosaccharides in rat intestinal epithelial cells to the same extent as reported previously for 1-deoxynojirimycin (DJN) [Saunier, Kilker, Tkacz, Quaroni & Herscovics (1982) J. Biol. Chem. 257, 14155-14161]. Analysis of each of the endo-beta-N-acetylglucosaminidase H (endo H)-sensitiv...
متن کاملInhibition of processing of plant N-linked oligosaccharides by castanospermine.
Castanospermine (1,6,7,8-tetrahydroxyoctahydroindolizine) is a plant alkaloid that inhibits lysosomal alpha- and beta-glucosidase. It also inhibits processing of influenza viral glycoproteins by inhibiting glucosidase I and leads to altered glycoproteins with Glc3Man7GlcNAc2 structures. Castanospermine was tested as an inhibitor of glycoprotein processing in suspension-cultured soybean cells. S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 345 Pt 3 شماره
صفحات -
تاریخ انتشار 2000